
ni.com

FPGA design with National Instuments

Rémi DA SILVA

Systems Engineer - Embedded and Data Acquisition Systems - MED Region

2ni.com/byoes

The NI Approach to Flexible Hardware

Processor

 Real-time OS
 Application software
 Networking and

peripheral I/O drivers
 DMA, interrupt, and

bus control drivers

FPGA

 Application IP
 Control IP
 DSP IP
 Specialized I/O drivers

and interface
 DMA controller

3ni.com/byoes

NI Embedded Software Architecture Options

FPGA Interface
C API

C/C++

LabVIEW
LabVIEW

FPGA

FPGAReal-Time Processor

1

23

1 LabVIEW RT and FPGA

2 LabVIEW RT app for I/O, with
C/C++ app or library

3 C/C++ on RT, LabVIEW FPGA

4ni.com/byoes

Project Explorer
Manage and organize all system

resources, including I/O and
deployment targets

Front Panel
Create event-driven user

interfaces to control systems and
display measurements

Block Diagram
Define and customize the
behavior of your system using
graphical programming

Instant Compilation
See the state of

your application at
all times, instantly

Parallel Programming
Create independent loops that
automatically execute
in parallel

Analysis Libraries
Use high-performance analysis
libraries designed
for engineering and science

Hardware Connectivity
Bring real-world signals into
LabVIEW from any I/O on any
instrument

Timing
Define explicit execution order
and timing with sequential data
flow

Deployment Targets
Deploy LabVIEW code to the

leading desktop, real-time, and
FPGA hardware targets

Models of Computation
Combine and reuse .m files, C
code, and HDL with graphical

code

LabVIEW System Design Software

Accelerates Your Success
By abstracting low-level complexity and integrating all of the tools you need to build any measurement or control system

5ni.com/byoes

Complete
System IDE

Windows Desktop PC Application

Real-Time Processor Application

FPGA Application

System Design Tool

LabVIEW System Development Environment

6ni.com/byoes

Complete
System IDE

Math and
Analysis

LabVIEW System Development Environment

7ni.com/byoes

.m File Scripts

Graphical Graphical

.m File Scripts

Complete
System IDE

Math and
Analysis

Reuse of
Existing Code

LabVIEW System Development Environment

8ni.com/byoes

Complete
System IDE

Math and
Analysis

Reuse of
Existing Code

Graphical Syntax VHDL

LabVIEW System Development Environment

9ni.com/byoes

Graphical SyntaxC/C++
Code

Complete
System IDE

Math and
Analysis

Reuse of
Existing Code

LabVIEW System Development Environment

10ni.com/byoes

Complete
System IDE

Math and
Analysis

Reuse of
Existing Code

Graphical
Debugging

LabVIEW System Development Environment

11ni.com/byoes

Complete
System IDE

User
Interface

Math and
Analysis

Reuse of
Existing Code

Graphical
Debugging

LabVIEW System Development Environment

12ni.com/byoes

~4000 lines of VHDL

Acquire analog data point-by-point

Directly transfer analog data to
processor memory via FIFO for data
logging, display, etc.

Abstraction of Hardware Complexities

LabVIEW FPGA vs. VHDL

13ni.com/byoes

“VI” = Program or Function

“Block Diagram” = Code

“Project” = System Configuration

LabVIEW Environment Basics

“Front Panel” = User Interface

ni.com

Embedded systems – LabVIEW
FPGA

15ni.com/byoes

Field-Programmable Gate Array (FPGA)

Configurable Logic Blocks (CLBs)
Implement logic using flip-flops and LUTs

Multipliers and DSPs
Implement signal processing using
multiplier and multiplier-accumulate circuitry

Memory Blocks
Store data sets or values in user defined RAM

Programmable Interconnects
Route signals through the FPGA matrix

I/O Blocks
Directly access digital and analog I/O

16ni.com/byoes

FPGAs Are Dataflow Systems

A

B

C

D

F

17ni.com/byoes

Parallel Processing

A

B

C

D

F

W

X

Y Z

18ni.com/byoes

“VI” = Application

“Block Diagram”= Code

“Project” = System Configuration

LabVIEW FPGA

“Front Panel”= Interface Elements I/O Node

19ni.com/byoes

begin

LED <= LED_local;

process (CLK_50MHZ)

begin

if rising_edge(CLK_50MHZ) then

if ToggleLED then

LED_local <= not LED_local;

end if;

end if;

end process;

CounterProc: process (CLK_50MHZ)

begin

if rising_edge(CLK_50MHZ) then

if CounterValue = kCounterTC then

CounterValue <= (others => '0');

ToggleLED <= true;

else

CounterValue <= CounterValue + 1;

ToggleLED <= false;

end if;

end if;

end process CounterProc;

end rtl;

Physical wire connection to “LED”

LabVIEW FPGA vs. VHDL: Blink an LED
VHDL Implementation

20ni.com/byoes

begin

LED <= LED_local;

process (CLK_50MHZ)

begin

if rising_edge(CLK_50MHZ) then

if ToggleLED then

LED_local <= not LED_local;

end if;

end if;

end process;

CounterProc: process (CLK_50MHZ)

begin

if rising_edge(CLK_50MHZ) then

if CounterValue = kCounterTC then

CounterValue <= (others => '0');

ToggleLED <= true;

else

CounterValue <= CounterValue + 1;

ToggleLED <= false;

end if;

end if;

end process CounterProc;

end rtl;

Physical wire connection to “LED”

Toggle the physical LED when
internal timing signal “ToggleLED”
is true. Executes every tick of the
50Mhz clock.

LabVIEW FPGA vs. VHDL: Blink an LED
VHDL Implementation

21ni.com/byoes

begin

LED <= LED_local;

process (CLK_50MHZ)

begin

if rising_edge(CLK_50MHZ) then

if ToggleLED then

LED_local <= not LED_local;

end if;

end if;

end process;

CounterProc: process (CLK_50MHZ)

begin

if rising_edge(CLK_50MHZ) then

if CounterValue = kCounterTC then

CounterValue <= (others => '0');

ToggleLED <= true;

else

CounterValue <= CounterValue + 1;

ToggleLED <= false;

end if;

end if;

end process CounterProc;

end rtl;

Physical wire connection to “LED”

Toggle the physical LED when
internal timing signal “ToggleLED”
is true. Executes every tick of the
50Mhz clock.

Counter establishes the timing of
the “ToggleLED” signal. Goes

“true” when the counter reaches
50,000,000 (1 second) and resets
counter.

LabVIEW FPGA vs. VHDL: Blink an LED
VHDL Implementation

22ni.com/byoes

LED I/O Resource

LabVIEW FPGA vs. VHDL: Blink an LED
LabVIEW Implementation

23ni.com/byoes

NOT (Toggle)

LED I/O Resource

LabVIEW FPGA vs. VHDL: Blink an LED
LabVIEW Implementation

24ni.com/byoes

Loop Timing (1000ms)

NOT (Toggle)

LED I/O Resource

LabVIEW FPGA vs. VHDL: Blink an LED
LabVIEW Implementation

25ni.com/byoes

Why Are FPGAs Useful?

• True Parallelism – Provides parallel tasks and pipelining

• High Reliability – Designs become a custom circuit

• High Determinism – Runs algorithms at deterministic rates
down to 25 ns (faster in many cases)

• Reconfigurable – Create new and alter existing task-specific
personalities

26ni.com/byoes

Parallel Processing

A

B

C

D

F

W

X

Y Z

27ni.com/byoes

High Reliability and Determinism

H
ard

w
are

O
p

e
ratin

g
 S

yste
m

D
rive

r A
P

I

A
p

p
lica

tio
n
 S

o
ftw

are

C
alcu

latio
n

Decision Making in Software

~25 ms
Response

Outputs

System
or Device

Multiple Software Layers

28ni.com/byoes

High Reliability and Determinism

H
a
rd

w
a
re

O
p

e
ratin

g
 S

yste
m

D
rive

r A
P

I

A
p

p
lica

tio
n
 S

o
ftw

are

C
a
lc

u
latio

n

~25 ns
Response

Outputs

UUT

Decision Making in Hardware

Highest Reliability

Highest
Determinism

System
or Device

29ni.com/byoes

Reconfigurable

• Enables rapid development iterations

• Reduces overall design cost, taking NRE into account

• Decreases long-term maintenance

FPGAs Custom Circuits ASICs

vs.

ni.com

Common application target

31ni.com/byoes

Common Applications

• High-speed control

• Custom data acquisition

• Digital communication protocols

• Inline signal processing

32ni.com/byoes

High-Speed Control

33ni.com/byoes

Custom Triggered Analog Input

• Custom timing & synchronization

• Multi-rate sampling

• Custom counters

• Flexible PWM

• Flexible encoder interface

34ni.com/byoes

Digital Communication Protocol APIs

• Communications Protocols Palette: SPI/I2C

• Serial:

35ni.com/byoes

Inline Signal Processing and Data Reduction

Inputs Analog voltages
Digital communication

Sensor signals
…

Streaming from input
to output without host

involvement

36ni.com/byoes

Inline Signal Processing and Data Reduction

Outputs

DMA preprocessed data to Processor:
Save to file, additional analysis,
Transfer over network

Analog voltages
Digital communication
Motor/actuator drives

…

Data
Transfer

FPGA Processing
Encoding/decoding
Filtering/averaging
Modulation/demod

Decimation
Stream processing

…

Streaming from input
to output without host

involvement

37ni.com/byoes

Data Transfer : I/O  FPGA

• FPGA I/O Nodes acquire and generate data

• Directly connected to I/O pins

• Data rates are defined by the AIO/DIO modules

• FPGA acquires one data point per loop iteration

• Can rename channels to be application-specific

38ni.com/byoes

FPGA  RT: FPGA Read/Write Controls

Real-Time VIFPGA VI

39ni.com/byoes

FPGA  RT: Direct Memory Access (DMA) FIFOs

• DMA FIFOs are an efficient mechanism for streaming data to/from the FPGA
to/from a Real-Time or Windows Processor

• RIO hardware targets have between 3 to 16 dedicated DMA channels,
depending on the FPGA

• Target-Scoped FIFOs can transfer data between different portions of an FPGA
VI or between VIs on an FPGA Target

40ni.com/byoes

Real-Time Buffer

Data Element

FPGA  RT: DMA FIFOs

DMA Engine

FPGA DMA FIFO

ni.com

Clocking

Process event, and registers

42ni.com/byoes

Understanding Clocks and Hardware Concurrency

• A Timed Loop on FPGA
runs at 40MHz by default,
based on the Onboard
Clock

• A While Loop will execute
at the rate specified in the
Loop Timer function, either
in ticks, ms, or µs.

43ni.com/byoes

Understanding Clocks and Hardware Concurrency

• The enable chain includes registers between
each node that store values and execute at
the rising edge of the clock

• A Timed Loop on FPGA is called a Single
Cycle Timed Loop (SCTL)

• Code executes in 1 clock cycle

• Removes registers

• Uses less resources

• Not all functions are supported

ni.com

LabVIEW design flow

45ni.com/byoes

Simplified FPGA Design Flow

Design
Entry

Simulation

Compilation

Deployment

46ni.com/byoes

Design
Entry

Simulation

Compilation

Deployment

•Interface Abstraction
•HDL/IP Integration

•Configuration-Based

Simplified FPGA Design Flow

47ni.com/byoes

Interface Abstraction

• I/O Interfaces to NI and 3rd party I/O modules, custom daughtercards

• Built-in DMA FIFO and memory interfaces

48ni.com/byoes

Configuration-Based Design

49ni.com/byoes

Reuse of Existing HDL Algorithms

• Use LabVIEW as the glue of your application

• Leverage existing digital design team expertise

• Similar to calling a shared library in LabVIEW on Windows or Real-Time

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity DemoClipAdder is

port (

clk : in std_logic;

aReset : in std_logic;

cPortA : in std_logic_vector(15 downto 0);

cPortB : in std_logic_vector(15 downto 0);

cAddOut : out std_logic_vector(15 downto 0)];

50ni.com/byoes

Design
Entry

Simulation

Compilation

Deployment

•Simulation Tools
•Interactive Window Debugging

•Interface Abstraction
•HDL/IP Integration

•Configuration-Based

Simplified FPGA Design Flow

51ni.com/byoes

Be More Productive with LabVIEW FPGA
Verify Faster

Verify Code using Simulated I/O

Use the Desktop Execution Node to verify code by
developing test benches using simulated or file
generated I/O

Verify Signal Timing with Waveform Probe

Use the Digital Waveform Probe to probe your signals
relative to one another and view history

Debug with Standard LabVIEW Features in Simulation

Highlight execution, breakpoints, and stepping features

52ni.com/byoes

LabVIEW FPGA Desktop Execution Node

Test Harness

Unit Test

53ni.com/byoes

Interactive Front Panel “User Interface”

54ni.com/byoes

Design
Entry

Simulation

Compilation

Deployment

•Simulation Tools
•Interactive Window Debugging

•Interface Abstraction
•HDL/IP Integration

•Configuration-Based

Simplified FPGA Design Flow

•One-click automation
of the Xilinx Tools

•Local Computer,
Server, or Cloud
Compilation

55ni.com/byoes

Compilation Process

LabVIEW FPGA Code FPGA Logic ImplementationCompile VHDL through Xilinx

56ni.com/byoes

Compilation Process

LabVIEW FPGA Code FPGA Logic ImplementationCompile VHDL through Xilinx

Translation
VHDL

Generation

Optimization
Analysis &

Logic
Reduction

Synthesis
Place & Route

Timing
Verification

Bit Stream
Generation

Download &
Run

57ni.com/byoes

One-Click Deployment and Compilation

Development
PC

Compile
Server and
Workers

High-
Performance

Cloud

58ni.com/byoes

Design
Entry

Simulation

Compilation

Deployment

Simplified FPGA Design Flow

•Simulation Tools
•Interactive Window Debugging

•Interface Abstraction
•HDL/IP Integration

•Configuration-Based

•One-click automation
of the Xilinx Tools

•Local Computer,
Server, or Cloud
Compilation

•Packaged and Board-level
Hardware Options

59ni.com/byoes

Integration with the Latest Hardware Products

.

.

CompactDAQ Controller

Compact Vision
System

Zynq Single-Board RIO

System on Module

myRIO

Quad-core Performance CompactRIO

FlexRIO

60ni.com/byoes

NI System on Module
Core processing unit for an embedded system

• Minimizes design time and risk
• Save time and risk with off-the-shelf hardware and software

• Quickly prototype with off-the-shelf NI embedded targets and I/O

• Develop high-speed and advanced applications with an FPGA
without HDL expertise

• Designed, tested, and validated for reliable deployments

ni.com

Xilinx® Tools

IDE (ISE, VIVADO) and primitive functions

62ni.com/byoes

Xilinx® Tools

• NI provides some IP from LV FPGA like FFT, FIRs…

Does Xilinx® has other IP for our FPGA?
-> Coregen

63ni.com/byoes

Third Party Simulation

• Used to create detailed models of timing and functional behavior of designs

• Xilinx ISIM is shipped with the Xilinx Tools

• ModelSim/Questa

